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Abstract. This article introduces a new R package (pspatreg) for the estimation of
semiparametric spatial autoregressive models. pspatreg fits penalized spline semiparametric
spatial autoregressive models via Restricted Maximum Likelihood or Maximum Likelihood.
These models are very flexible as they make it possible to simultaneously control for spatial
dependence, nonlinearities in the functional form, and spatio-temporal heterogeneity.
The package also allows to estimate parametric spatial autoregressive models for both
cross-sectional and panel data (with fixed effects), thus avoiding the use of different
libraries. The official demos, vignettes, and tutorials of the package are distributed either
in CRAN or GitHub. This article illustrates the potentials of the package by applying it
to cross-sectional data.
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1 Introduction

Modeling spatial and spatio-temporal data requires flexible econometric tools that allow
us to control spatial and temporal dependence, spatial heterogeneity, non-linearities, and
other possible model specification biases. When combined with standard parametric
spatial econometric approaches, semiparametric regression models can provide an answer
to this demand for flexibility. New computational methods developed within most modern
statistical software (such as R) allow us to overcome all technical problems that arise in
this process.

Several packages have recently been proposed to perform spatial econometrics in
R (see Bivand et al. 2021, for a recent survey). Focusing on packages and methods
dealing with polygonal (or areal) spatial data, the first package was spdep (Bivand et al.
2013, Bivand 2022). It was primarily designed for cross-sectional spatial data and to
model spatial dependence through the Maximum Likelihood (ML) or the Generalized
Method of Moments (GMM) estimation of the spatial lag model (SAR), the spatial error
model (SEM), the spatial Durbin model (SDM), and the SARAR model. The estimation
functions from spdep have recently been moved to the package spatialreg (Bivand et al.
2021). Other spatial econometric models for cross-sectional data have been implemented
in other packages: sphet (Piras 2010) for estimating and testing spatial models with
heteroskedastic innovations, spfilteR (Juhl 2021) for filtering out spatial dependence in
linear models, spgwr (Bivand, Yu 2022) for estimating geographycally weighted regression
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models, and spsur (Lopez et al. 2020) for estimating seemingly unrelated regression
equations. Moreover, following several theoretical contributions to the literature on the
estimation of static and dynamic spatial panel data models (see Elhorst 2014), other R
packages for spatial econometric analysis have recently been developed. In particular,
splm (Millo, Piras 2012) and SDPDm implement estimation methods for static and
dynamic spatial panel data. All of these R packages focus on parametric methods (except
spgwr, of course), leaving aside issues related to non-linearities in functional form and the
estimation of spatio-temporal trends.

The main focus of this article is pspatreg, a new R package for spatial econometric
analysis. pspatreg fits penalized spline (PS) semiparametric spatial autoregressive models
via Restricted Maximum Likelihood (REML) and ML. This approach combines penalized
regression spline methods1 (Eilers et al. 2015) with standard spatial autoregressive models
(such as SAR, SEM and SDM). These types of models (PS-SAR, PS-SEM and PS-SDM)
are thoroughly discussed in Mínguez et al. (2020) (see also Montero et al. 2012, Basile
et al. 2014, Hoshino 2018).

These models are very flexible as they make it possible to include within the same
specification: i) spatial autoregressive terms (i.e. spatial lags of dependent and independent
variables as well as spatial error terms) to capture spatial interaction or network effects;
ii) time lags of the dependent variable to capture persistence effects; iii) parametric and
nonparametric (smooth) terms to identify nonlinear relationships between the response
variable and the covariates; iv) spatial and spatio-temporal trends, i.e. a smooth interaction
between the spatial coordinates and the time trend, to capture site-specific nonlinear
time trends.

The proposed method also allows the user to apply an ANOVA decomposition of the
spatial or spatio-temporal trend into several components (spatial and temporal main
effects, and second- and third-order interactions between them). This gives further
insights into the dynamics of the data. Thus, we use the acronym PS-ANOVA-SAR (SEM,
SDM, SLX) for the newly proposed data generating process (DGP). The use of nested
B-spline bases for the interaction components of the spatio-temporal trend (Lee et al. 2013)
contributes to the efficiency of the fitting procedure without compromising the goodness
of fit of the model. Finally, we also consider an extension of the PS-ANOVA-SAR (SEM,
SDM, SLX), including a first-order time series autoregressive term process (AR1) in the
noise to accommodate residual serial correlation. Further extensions to include the time
lag of the dependent variable (dynamic spatial model) will be considered in the future.

The next section (Section 2) describes the availability of pspatreg with documentation
and examples. Section 3 presents a general specification of the semiparametric spatial
autoregressive model. Section 4 shows an example of using pspatreg with cross-sectional
spatial data. The last section presents a conclusion.

2 Documentation of pspatreg

The pspatreg package is available on both CRAN (https://cran.r-project.org/web/packa-
ges/pspatreg/index.html) and GitHub (https://github.com/rominsal/pspatreg) and can
be installed in the usual way2.

Once the package has been installed and loaded, an overview of the functionality of
the package, including main functions, methods and databases, can be obtained executing
the command ?pspatreg.

The package includes three vignettes. The first one provides a brief description of
the methodology used in the package. The second vignette gives a detailed example of
modeling pure spatial data with semiparametric models and spatial lags using the well-

1P-splines are a flexible tool for smoothing. They are based on regressions with a large number
of local basis functions (called B-splines). A penalty function based on differences between adjacent
coefficients is also included in the maximum likelihood function to tune the smoothness of the estimated
curve.

2You could install pspatreg from CRAN executing install.packages("pspatreg"). Usually
the default options allow to install the package without any problems. Alternatively, to
install from GitHub you could use devtools package. Once installed, execute the command
devtools::install_github("rominsal/pspatreg") to install pspatreg package.

REGION : Volume 9, Number 2, 2022

https://cran.r-project.org/web/packages/pspatreg/index.html
https://cran.r-project.org/web/packages/pspatreg/index.html
https://github.com/rominsal/pspatreg


R. Mínguez, R. Basile, M. Durbán R3

known Ames database included in package AmesHousing (Kuhn 2020). It also compares
the results of pspatreg with the spatialreg package for parametric spatial regression models.
Lastly, the third vignette provides some insights into spatio-temporal modeling using a
panel database of unemployment in Italian provinces. First, this vignette compares the
results of spatio-temporal parametric panels with the splm package, and then it shows
the results of semiparametric spatio-temporal models. Plots of spatio-temporal trends
are also included in these examples.

Of course, every function in the package includes reproducible examples. Those
included in pspatfit(), impactspar(), impactsnopar(), plot_sp2d(), plot_sp3d(),
and plot_sptime() functions are especially interesting. Furthermore, these examples
can be also checked using the demos of the package, see ?demo(package = "pspatreg")
for details of the included demos.

3 The Semiparamentric Spatial Autoregressive Model

Let yit be a sample of spatial panel data, where i is an index for the cross-sectional
dimension (spatial units), with i = 1, . . . , N , and t is an index for the time dimension
(time periods), with t = 1, . . . , T . The general model proposed is written as:

yit = ρ

N∑
j=1

wij,Nyjt + f̃(s1i, s2i, τt) +
k∑

δ=1
gδ(xδit) + ϵit,

where (s1i, s2i) are the spatial coordinates (latitude and longitude) of individual i (when
i refers to areal units: municipality, provinces, etc., the standard convention here is to
identify representative points for areal units, the most typical being areal centroids), τt is
the time period, and xδit are independent variables; wij are the spatial weights, and ρ the
spatial autoregressive parameter. The functions gδ(.) are parametric or non-parametric
smooth functions of the covariates xδit

(they can be linear, or can accommodate varying
coefficient terms, smooth interaction between covariates, smooth by-factor curves, and
so on), and f̃(s1i, s2i, τt) is an unknown non-parametric spatio-temporal trend. The
idiosyncratic error term is assumed to follow an AR(1) process, i.e., ϵit = ϕϵit−1 + uit

with uit ∼ N(0, σ2).
This semiparametric SAR model turns out to be extremely useful to capture interactive

spatial and temporal unobserved heterogeneity when this heterogeneity is smoothly
distributed over space and time (Mínguez et al. 2020). The dynamic extension (including
yit−1 and

∑N
j=1 wij,Nyit−1) is also very promising and merits further theoretical inves-

tigation. Finally, the following semiparametric SAR model is very useful for modeling
cross-setional spatial data taking into account non-linearities, spatial dependence, and
spatial heterogeneity:

yi = ρ

N∑
j=1

wij,Nyj +
∆∑

δ=1
gδ(xδ,i) + f̃(s1i, s2i) + ϵi

ϵi ∼ i.i.d.(0, σ2
ϵ ).

3.1 The Anova Decomposition of the Spatio-temporal Trend

In many situations, the spatial or the spatio-temporal trend to be estimated can be
complex, and the use of a single multidimensional smooth function may not be flexible
enough to capture the structure in the data. To solve this problem, an ANOVA-type
decomposition of f̃(s1i, s2i, τt) can be used, where spatial and temporal main effects, and
second- and third-order interactions between them can be identified:

f̃(s1i, s2i, τt) = f1(s1i) + f2(s2i) + fτ (τt) + f1,2(s1i, s2i) +
f1,τ (s1i, τt) + f2,τ (s2i, τt) + f1,2,τ (s1i, s2i, τt)
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First, the geoadditive terms given by f1(s1i), f2(s2i), f1,2(s1i, s2i) work as control
functions to filter the spatial trend out of the residuals, and transfer it to the mean
response in a model specification. Thus, they make it possible to capture the shape of
the spatial distribution of yit, conditional on the determinants included in the model.
These control functions also isolate stochastic spatial dependence in the residuals, that is,
spatially autocorrelated unobserved heterogeneity. Thus, the geoadditive terms can be
regarded as an alternative to the use of individual regional dummies to capture unobserved
heterogeneity, as long as such heterogeneity is smoothly distributed over space. Regional
dummies peak at significantly higher and lower levels of the mean response variable. If
these peaks are smoothly distributed over a two-dimensional surface (i.e., if unobserved
heterogeneity is spatially autocorrelated), the smooth spatial trend is able to capture
them. It is also worth noticing that, in a cross-sectional setting, the inclusion of a smooth
spatial trend in the model specification is often the best way to control for unobserved
spatial heterogeneity in the absence of degrees of freedom for the introduction of spatial
fixed effects.

Second, the smooth time trend, fτ (τt), and the smooth interactions between space and
time – f1,τ (s1i, τt), f2,τ , (s2i, τt), f1,2,τ (s1i, s2i, τt) – work as control functions to capture
the heterogeneous effect of common shocks. Thus, conditional on a smooth distribution of
the spatio-temporal heterogeneity, the PS-ANOVA-SAR (SDM, SEM, SLX) model works
as an alternative to the models proposed by Bai, Li (2013), Shi, Lee (2018), Pesaran,
Tosetti (2011), Bailey et al. (2016) and Vega, Elhorst (2016) which are extensions of
common factor models to accommodate both strong cross-sectional dependence (through
the estimation of the spatio-temporal trend) and weak cross-sectional dependence (through
the estimation of spatial autoregressive parameters).

Furthermore, this framework is also flexible enough to control for the linear and
non-linear functional relationships between the dependent variable and the covariates,
as well as the heterogeneous effects of these regressors across space. The model inherits
all the positive properties of penalized regression splines, such as coping with missing
observations by appropriately weighting them and straightforward interpolation of the
smooth functions.

3.2 Direct and Indirect (Spillover) Effects of Smooth Terms in the PS-SAR Model

In the case of a semiparametric model without the spatial lag of the dependent variable
(PS model), if all regressors are independent of the errors, ĝδ(xδ,it) can be interpreted
as the conditional expectation of y given xδ (net of the effect of the other regressors).
Blundell, Powell (2003) use the term Average Structural Function (ASF) with reference
to these functions. In contrast, in PS-SAR, PS-SDM or in PS-SARAR model, when ρ is
different from zero, the estimated smooth functions cannot be interpreted as ASF. Taking
advantage of the results obtained for parametric SAR, we can compute the total smooth
effect (total–ASF) of xδ as:

ĝT
δ (xδ) = Σq [In − ρ̂Wn]−1

ij bδq(xδ)β̂δq,

where bδq(xδ) are the B-spline basis functions used to represent the smooth function, and
β̂δq the corresponding estimated parameters.

We can also compute direct and indirect (or spillover) effects of smooth terms in the
PS-SAR case as:

ĝD
δ (xδ) = Σq [In − ρ̂Wn]−1

ii bδq(xk)β̂δq

ĝI
δ (xδ) = ĝT

δ (xδ) − ĝD
δ (xδ) .

Similar expressions can be provided for the direct, indirect, and total effects of the
PS-SDM.
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4 Basic Information on pspatreg

We are now going to introduce some basic general information about the package. The
main function in the pspatreg package is pspatfit(), which estimates spatio-temporal
pernalized spline spatial regression models using either the REML method or the ML
method. In its generic form, pspatfit() appears as:

pspatfit(formula, data, na.action, listw = NULL, type = "sim", method = "eigen",
Durbin = NULL, zero.policy = NULL, interval = NULL,trs = NULL, cor = "none",
dynamic = FALSE, control = list())

The function pspatfit() returns a list of objects of class pspatreg, including
coefficients of the parametric terms and their standard errors, estimated coefficients
corresponding to random effects in mixed model and their standard errors, equivalent
degrees of freedom, residuals, fitted values, etc. A wide range of standard methods is
also available for the pspatreg objects, including print(), summary(), coef(), vcov(),
anova(), fitted(), residuals(), and plot().

The argument formula within the function pspatfit() is formula similar to the
GAM specification including parametric and non-parametric terms. Parametric covariates
are included in the usual way. Non-parametric p-spline smooth terms are specified using
pspl(.) and pspt(.) for the non-parametric covariates and spatial or spatio-temporal
trends, respectively. For example:

[1]: formula <- y ~ x1 + x2 + pspl(x3, nknots = 15) + pspl(x4, nknots = 20) +
pspt(long, lat, year, nknots = c(18,18,8), psanova = TRUE,

nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3),
nest_time = c(1, 2, 2))

In the example above, the model includes two parametric terms, two non-parametric
terms, and a spatio-temporal trend (with long and lat as spatial coordinates and year
as temporal coordinate). The dimension of the basis function, both in pspl(.) and
pspt(.), is defined by nknots. This term should not be less than the dimension of the
null space of the penalty for the term (see null.space.dimension and choose.k from
package mgcv (Wood 2017) to know how to choose nknots). The default number of
nknots in pspl(.) is 10 but, in this example, we have chosen 15 nknots for g_1(x_3)
and 20 nknots for g_2(x_4). The default number of nknots in pspt(.) is c(10,10,5),
but we have chosen c(18,18,8).

In this example we also adopt an ANOVA decomposition of the spatio-temporal
trend (choosing psanova = TRUE). Each effect has its own degree of smoothing which
allows a greater flexibility for the spatio-temporal trend. Calculating up to third-order
interactions can be computationally expensive. We can select subgroups of interaction
effects for the second- and third-order effects to address this problem. We use three
parameters available in pspt(): nest_sp1, nest_sp2, and nest_time to define these
subgroups. These parameters indicate the divisors of the nknots parameters. For example,
if we set nest_sp1 = c(1,2,3), we will have all knots for the s_1 effect, 18/2 for each
second-order effects with s_1, and 18/3 nots for the third order effect with s_13.

We must set the parameters f1_main, f2_main or ft_main to FALSE (the default is
TRUE) if we want to exclude any main effect. We can also exclude second- or third-order
effects setting f12_int, f1t_int, f2t_int, f12t_int to FALSE.

Using the argument Type, we can choose different spatial model specifications: "sar",
"sem", "sdm", "sdem", "sarar", or "slx". When creating a "slx", "sdem", or "sdm"
model, we need to include the formula of the durbin part in the Durbin parameter.

The argument data must contain all the variables included in parametric and non-
parametric terms of the model. If a pspt(.) term is included in formula, the data
must contain the spatial and temporal coordinates specified in pspt(.). In this case, the

3In most empirical cases, the main effects are more flexible than interaction effects and therefore the
number of knots in B-Spline bases for interaction effects do not need to be as large as the number of
knots for the main effects (Lee et al. 2013).
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coordinates must be ordered choosing time as fast index and spatial coordinates as slow
indexes.

Both data.frame and sf class objects can be used as data inputs4. sf objects are
recommended since they allow the user to map spatial trends. We use two datasets in sf
version for our demos.

Plotting the estimated non-parametric smooth terms represents an important step in
semiparametric regression analyses. First, the function fit_terms() computes estimated
non-parametric smooth terms. Then, the functions plot_sp2d() and plot_sp3d() are
used to plot and map spatial and spatio-temporal trends, respectively, while plot_sptime()
is used to plot the time trend for PS-ANOVA models in 3d. Finally, plot_terms() is
used to plot smooth non-parametric terms.

The function impactspar() computes direct, indirect, and total impacts for continuous
parametric covariates using the standard procedure for their computation (LeSage, Pace
2009).

The function impactsnopar() computes direct, indirect, and total impacts functions
for continuous non-parametric covariates, while the function plot_impactsnopar() is
used to plot these impacts’ functions. It is worth noticing that total, direct, and indirect
effects are never smooth over the domain of the variable xδ due to the presence of the
spatial multiplier matrix used in the algorithm for their computation. Indeed, a wiggly
profile of direct, indirect, and total effects would appear even if the model was linear.
Therefore, in the spirit of the semiparametric approach, we included the possibility of
applying a spline smoother to obtain smooth curves (using the argument smooth=TRUE in
the function plot_impactsnopar()).

5 Using pspatreg with Cross-sectional Spatial Data

Here, we present the use of pspatreg for spatial cross-sectional data (no time dimension
involved). In particular, we use Italian province-level data for the estimation of the
relationship between labor productivity growth and net internal migration. The standard
neoclassical growth model can be specified, in its linear form, as follows:

γi = α+ β ln yi,0 + δmi + τ ln(ni) +X
′

iψ + ϵi,

where γi = (ln yi,T − ln yi,0)/T is the average annual growth rate of labor productivity
(measured as gross value added per worker) computed over T periods (our sample period
goes from 2002 to 2018) for each province i (107 Italian provinces), ln yi,0 captures
the initial conditions of each province (a negative value of β indicates conditional
convergence), mi is the average annual provincial internal net migration rate (computed
as the difference between internal immigration and emigration flows of the working-age
population, i.e. people aged 15-65, divided by the total working-age population), ln(ni) is
the average employment growth rate (the neoclassical growth model suggests a negative
value of τ), Xi is a vector of variables controlling for other growth determinants such
as physical and human investment rates, and ϵi is an identically and independently
distributed error term.

Net population movements generally tend to be oriented towards prosperous areas
which offer higher real income prospects. This is also true for the Italian case (see Figure
1), where all Southern provinces have negative net migration rates and all Northern
provinces have positive rates.

According to the standard neoclassical framework, this pattern of migration should
represent a mechanism for reducing spatial economic differentials. Labor migration
from poor to rich areas lowers capital intensity (increases the return to capital) in the

4sf means simple features of spatial vector objects. The geographic vector data model is based on
points located within a coordinate reference system (CRS). Points can represent self-standing features
(e.g., the location of a house) or they can be linked together to form more complex geometries such as
lines and polygons. Most point geometries contain only two dimensions x and y (3-dimensional CRSs
contain an additional z value, typically representing height above sea level). sf objects provide both
a geometry information, describing where on Earth the feature is located, and attributes information,
describing other properties (like the population of the region, the unemployment rate, etc.). data.frame
objects store only attributes information.
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Figure 1: Internal net migration rate from 2002 to 2018 in Italian provinces

Internal net migration rate
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destination region and increases capital intensity (lowers the return to capital) in the
region of origin. When the same technologies are used everywhere, migration speeds up per
worker inter-regional convergence in capital intensity and labor productivity. Therefore,
the neoclassical framework predicts a negative value of δ (i.e. net inward migration reduces
labor productivity growth). However, alternative theories point to the importance of
migrants’ characteristics such as youthfulness, entrepreneurship, and skills that, together
with their impact on aggregate demand, may have growth-enhancing effects. In terms
of aggregate demand, regions losing population through migration may face economic
contraction, whereas regions gaining population through migration may benefit from an
expansionary effect on output, employment, and income. The transfer of human capital
from one place to another is another critical aspect. In particular, skill-selective mobility
may have deep effects on origin and destination places. All these alternative contributions
predict a positive effect of net migration on growth (i.e. a positive value of δ). Moreover,
the presence of a significantly positive effect of net migration is expected to decrease the
estimate of β, the parameter associated to the initial conditions (i.e. it is expected to
remove the positive omitted variable bias in estimates of β in regressions without the
migration variable). Our empirical analysis confirms this intuition. Using our dataset and
estimating the model with simple OLS, we actually find a positive effect of net migration
on labor productivity growth, in line with several empirical studies:

[2]: formlin_0 <- growth_PROD ~ lnPROD_0+lnoccgr
linear_0 <- lm(formlin_0, data = prod_it)
summary(linear_0, vcov = function(x) vcovHC(x, type = "HC1"))

[2]: ##
## Call:
## lm(formula = formlin_0, data = prod_it)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -0.0085578 -0.0022181 0.0001756 0.0020764 0.0082702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.036413 0.033147 1.099 0.2745
## lnPROD_0 -0.001892 0.003171 -0.596 0.5522
## lnoccgr -0.153926 0.077535 -1.985 0.0498 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.003261 on 104 degrees of freedom
## Multiple R-squared: 0.0847, Adjusted R-squared: 0.0671
## F-statistic: 4.812 on 2 and 104 DF, p-value: 0.01003

[3]: beta_conv_0 <- as.numeric(-log(linear_0$coefficients[2]*16+1)/16)
beta_conv_0

[3]: ## [1] 0.00192075

[4]: formlin <- growth_PROD ~ lnPROD_0+lnoccgr+net
linear <- lm(formlin, data = prod_it)
summary(linear, vcov = function(x) vcovHC(x, type = "HC1"))

[4]: ##
## Call:
## lm(formula = formlin, data = prod_it)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0085734 -0.0019501 -0.0000671 0.0021081 0.0089063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.131008 0.039651 3.304 0.001312 **
## lnPROD_0 -0.010650 0.003747 -2.842 0.005402 **
## lnoccgr -0.153775 0.072837 -2.111 0.037173 *
## net 0.107752 0.027962 3.854 0.000203 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.003064 on 103 degrees of freedom
## Multiple R-squared: 0.2, Adjusted R-squared: 0.1767
## F-statistic: 8.585 on 3 and 103 DF, p-value: 3.854e-05

[5]: beta_conv <- as.numeric(-log(linear$coefficients[2]*16 + 1)/16)
beta_conv

[5]: ## [1] 0.01167548

The results indicate a positive correlation between the growth rate of labor productivity
and the net migration rate of working-age population. Nevertheless, this linear specification
of the model is characterized by a number of potential mis-specification biases. First, there
can be a reverse causality problem between migration and productivity growth, so that the
net migration variable should be instrumented. A second source of endogeneity could be the
presence of omitted variables (or unobserved heterogeneity) correlated with the observed
covariates. Indeed, we do not control for human and physical capital accumulation rates
in the estimation above, due to the lack of information on these variables at the province
level in Italy. Additionally, we cannot exclude a correlation between these omitted terms
and the coviarates introduced in the model. Third, substantive spatial dependence effects
can emerge due to the network structure of Italian provinces, which are strongly connected
via trade or other kinds of links. A wrong functional form (due to non-linearities) can
represent a further source of model mis-specification. For the sake of simplicity, we
disregard the reverse causality issue and focus on the other sources of bias (unobserved
heterogeneity, spatial dependence, and nonlinearities) in what follows. In particular,
we show that controlling for unobserved heterogeneity is a fundamental challenge in
cross-sectional analysis (where we cannot include spatial fixed effects). Moreover, we
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should also consider that spatial dependence may simply be the consequence of (spatially
correlated) omitted variables rather than being the result of spillovers. If this is the
case, there are no compelling reasons for using traditional parametric models, like the
SAR or SEM. As McMillen (2012) shows, a simple semiparametric model, with a smooth
interaction between latitude and longitude (the so-called Geoadditive Model), can remove
unobserved heterogeneity.

5.1 The Parametric SAR Model

Following a step-by-step procedure, we first extend the linear classical model by including
a spatial autoregressive term, i.e. by estimating a SAR model5:

γi = α+ ρ

N∑
j=1

wij,Nγj + β ln yi,0 + δmi + τ ln(ni) + ϵi.

We estimate this model using the function pspatfit() of the package pspatreg and the
function impactspar() to compute direct, indirect, and total marginal effects. The
results show a significant spatial autoregressive parameter ρ of 0.365. The average direct
effect of net migration (0.11) is similar to the coefficient estimated with OLS, but we also
observe an indirect (spillover) impact of 0.06 and thus a total average effect of 0.17. The
same results are obviously obtained using the package spatialreg.

[6]: linsar <- pspatfit(formlin, data = prod_it,
listw = lwsp_it,
method = "eigen",
type = "sar")

[6]: ##
## Fitting Model...
##
## Time to fit the model: 0.88 seconds

[7]: summary(linsar)

[7]: ##
## Call
## pspatfit(formula = formlin, data = prod_it, listw = lwsp_it,
## type = "sar", method = "eigen")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1310379 0.0368036 3.5605 0.0005640 ***
## lnPROD_0 -0.0111188 0.0034779 -3.1970 0.0018495 **
## lnoccgr -0.1367972 0.0676062 -2.0234 0.0456430 *
## net 0.1087253 0.0259539 4.1892 5.961e-05 ***
## rho 0.3654309 0.0977673 3.7378 0.0003065 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-Fit
##
## EDF Total: 5
## Sigma: 0.00310498
## AIC: -1138.08
## BIC: -1124.72

[8]: imp_parvar_sar <- impactspar(linsar, list_varpar)
summary(imp_parvar_sar)

[8]: ##
## Total Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnPROD_0 -0.0179094 0.0066196 -2.7055239 0.0068

5Preliminary diagnostic tests (using likelihood ratio statistics) work in favor of the SAR model, rather
that the SDM and the SEM. Spatial autoregressive models are estimated using a standardized inverse
distance W matrix combined with a binary minimum threshold distance matrix.
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## lnoccgr -0.2227227 0.1107963 -2.0101994 0.0444
## net 0.1767814 0.0510990 3.4595896 0.0005
##
## Direct Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnPROD_0 -0.0116030 0.0037606 -3.0854441 0.0020
## lnoccgr -0.1450955 0.0691365 -2.0986808 0.0358
## net 0.1147453 0.0275071 4.1714852 0.0000
##
## Indirect Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnPROD_0 -0.0063064 0.0034608 -1.8222652 0.0684
## lnoccgr -0.0776272 0.0493192 -1.5739763 0.1155
## net 0.0620361 0.0299719 2.0698063 0.0385

5.2 Including the Spatial Trend

As already mentioned, McMillen (2012) and McMillen (2003) stress the importance
of considering whether apparent spatial dependence is in fact engendered by model
mis-specifications, such as the erroneous inclusion or omission of covariates and the
inappropriate functional form of included covariates. Therefore, we extend the SAR
model by first including a smooth spatial trend (thus estimating a semiparametric
geoadditive SAR model):

γi = α+ ρ

N∑
j=1

wij,Nγj + β ln yi,0 + δmi + τ ln(ni) + f̃(s1i, s2i) + ϵi.

We use the function pspt() with 10 knots for each each variable (latitude and longitude
of the centroid) to estimate the spatial trend. A model with a smooth spatial trend can
also be estimated in R using alternative packages, such as mgcv. The novelty of pspatreg
is to combine this model with the SAR or any other spatial model. The introduction
of the spatial trend in the model has some relevant consequences on the parameters
of the linear terms. First, the spatial lag parameter ρ decreases from 0.365 (estimated
with the linear SAR) to 0.202. Therefore, there is a clear trade-off between controlling
for unobserved heterogeneity and the extent of spatial spillover. Also, the parameter
associated to the net migration variable diminishes from 0.109 to 0.072 and becomes less
significant. This evidence suggests that omitted variables could have generated a bias in
the estimates of both OLS linear and pure SAR linear models, which do not include any
control for unobserved heterogeneity. Moreover, the marginal impacts do not reveal any
more evidence of indirect (spatial spillover) effects of the covariates.

[9]: formgeo <- growth_PROD ~ lnPROD_0+lnoccgr+ net +
pspt(longitude,latitude, nknots = c(10, 10), psanova = FALSE)

geosar <- pspatfit(formgeo, data = prod_it,
listw = lwsp_it,
method = "eigen",
type = "sar")

[9]: ##
## Fitting Model...
##
## Time to fit the model: 8.81 seconds

[10]: summary(geosar)

[10]: ##
## Call
## pspatfit(formula = formgeo, data = prod_it, listw = lwsp_it,
## type = "sar", method = "eigen")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2169096 0.0473358 4.5824 1.430e-05 ***
## lnPROD_0 -0.0191931 0.0045088 -4.2568 4.958e-05 ***
## lnoccgr -0.0451729 0.0761514 -0.5932 0.55449
## net 0.0727907 0.0415870 1.7503 0.08337 .
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## Xspt.2 -0.0116569 0.0155548 -0.7494 0.45551
## Xspt.3 0.0119923 0.0174543 0.6871 0.49375
## Xspt.4 -0.0149656 0.0204262 -0.7327 0.46561
## rho 0.2017864 0.1127590 1.7895 0.07679 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f(sp1, sp2) 6.228
##
## Goodness-of-Fit
##
## EDF Total: 14.2276
## Sigma: 0.00271168
## AIC: -1122.71
## BIC: -1084.69

[11]: list_varpar <- as.character(names(summary(geosar)$bfixed)[2:4])
eff_parvar <- impactspar(geosar, list_varpar)
summary(eff_parvar)

[11]: ##
## Total Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnPROD_0 -0.0246683 0.0069725 -3.5379541 0.0004
## lnoccgr -0.0591070 0.0969102 -0.6099146 0.5419
## net 0.0938277 0.0555063 1.6903981 0.0910
##
## Direct Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnPROD_0 -0.0196565 0.0045438 -4.3259872 0.0000
## lnoccgr -0.0478782 0.0766887 -0.6243182 0.5324
## net 0.0748585 0.0424452 1.7636519 0.0778
##
## Indirect Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnPROD_0 -0.0050118 0.0038085 -1.3159346 0.1882
## lnoccgr -0.0112288 0.0240919 -0.4660817 0.6412
## net 0.0189692 0.0184880 1.0260276 0.3049

We can plot the estimated spatial trend using the function plot_sp2d.

[12]: plot_sp2d(geosar, data = prod_it)

[12]: For the output see Figure 2

5.3 Including Other Univariate Smooth Terms

As a last step in our empirical application, we extend the model by allowing the variables
lnPROD0 and net to enter smoothly as non-parametric terms. Specifically, we use the
function pspl with 9 knots for each univariate term:

γi = α+ ρ

N∑
j=1

wij,Nγj + g1(ln yi,0) + g2(mi) + τ ln(ni) + f̃(s1i, s2i) + ϵi.

[13]: formgam <- growth_PROD ~ pspl(lnPROD_0, nknots = 9)+
lnoccgr+ pspl(net, nknots = 9)+

pspt(longitude,latitude, nknots = c(10, 10), psanova = FALSE)

gamsar <- pspatfit(formgam, data = prod_it,
listw = lwsp_it,
method = "eigen",
type = "sar")

[13]: ##
## Fitting Model...
##
## Time to fit the model: 8.76 seconds
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Figure 2: Output from codebox 12

[14]: summary(gamsar)

[14]: ##
## Call
## pspatfit(formula = formgam, data = prod_it, listw = lwsp_it,
## type = "sar", method = "eigen")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0108138 0.0021183 5.1050 1.754e-06 ***
## lnoccgr -0.0349342 0.0752188 -0.4644 0.6434249
## Xspt.2 -0.0137355 0.0118824 -1.1560 0.2506681
## Xspt.3 0.0172283 0.0137329 1.2545 0.2127989
## Xspt.4 -0.0136286 0.0158405 -0.8604 0.3918063
## pspl(lnPROD_0, nknots = 9).1 0.0200607 0.0054356 3.6906 0.0003772 ***
## pspl(net, nknots = 9).1 -0.0052598 0.0031396 -1.6753 0.0972432 .
## rho 0.1922019 0.1113342 1.7264 0.0876119 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(lnPROD_0, nknots = 9) 1.0295
## pspl(net, nknots = 9) 1.4016
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f(sp1, sp2) 3.769
##
## Goodness-of-Fit
##
## EDF Total: 14.2005
## Sigma: 0.00268938
## AIC: -1126.26
## BIC: -1088.31

[15]: list_varnopar <- c("lnPROD_0","net")
terms_nopar <- fit_terms(gamsar, list_varnopar)
plot_terms(terms_nopar, prod_it, alpha = 0.10)

[15]: For the output see Figure 3
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Figure 3: Ouput from codebox 15
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Figure 4: Output from codebox 16

Then, we compute the direct and indirect (or spillover) effects of the two smooth
terms in the PS-SAR using the function impactsnopar:

[16]: gamsar_impnopar <- impactsnopar(gamsar, listw = lwsp_it,
viewplot = FALSE,
smooth = FALSE, alpha = 0.1)

plot_impactsnopar(gamsar_impnopar, data = prod_it, smooth = TRUE)

[16]: For the output see Figure 4

6 Conclusions

This article has highlighted several advantages of using a semiparametric approach over a
purely parametric approach to space-time data modeling. Additionally, it has provided
a brief introduction to a new R package (psatreg) that allows estimating this class of
models.

The article has also demonstrated the use of this package by using spatial cross-sectional
data. This simple application has illustrated the existence of a strong interference between
the various problems of mis-specification that characterize the models for spatial data.
Specifically, it highlighted the existence of a strong trade-off between spatial dependence
and spatial heterogeneity. The inclusion of a spatial trend within a simple SAR model for
cross-sectional data (where the lack of degrees of freedom prevents the inclusion of spatial
fixed effects) has a strong impact on the magnitude of the spatial spillover parameter (ρ),
as well on the magnitude of the other model parameters (β). Other important examples,
also for spatio-temporal (i.e. panel) data, are provided by the vignettes included in the
package.

We also recognize the existence of limitations of the semiparametric approach for
dealing with spatio-temporal data proposed here. An obvious limitation is the difficulty of
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these kinds of models to fit data that are characterized by a weak spatial pattern. In this
case, while a fixed-effect approach (applied to spatial panel data) is capable of capturing
spatial heterogeneity, the inclusion of a spatial trend surface on the r.h.s. of the model
hardly captures the effects of omitted variables. However, we also observe that most of
the standard economic and social variables show a relevant spatial trend.

We would also like to point out some practical problems associated with the imp-
lementation of Spatial Autoregressive Semiparametric Models. In particular, it is well
known that nonparametric estimates may be spurious due to outliers, although in the
case of penalized splines the effect of the extreme values is often mitigated. In practice, it
might be necessary to trim extreme values at the edge of the data domain.

Regarding the problem of model selection, it seems preferable to simply compare
the performance of the different models in terms of some Information Criterion. We do
not yet provide a battery of diagnostic tests for Spatial Autoregressive Semiparametric
Models like the Lagrange Multiplier tests widely used in the traditional parametric spatial
econometric literature (LM-SEM,LM-SAR,LM-SARSAR). Indeed, the use and abuse of
LM tests for the spatial autocorrelation of the residuals has been largely criticized, as it
may lead to a mechanical selection process.

Finally, for future considerations, it is planned to include some functionalities in the
package to allow the estimation and inference of spatio-temporal regression models with
varying coefficients using P-spline metodology. These models can be seen as an alternative
to the usual Geographically Weighted Regression (GWR) models.
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